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Introduction to Part II

This sequel to Part I completes the notes of my two-quarter
course on Geometrical Mechanics, except for the final section of the
course which discussed Relativity Theory, the Schwarzschild metric,
and the relativistic explanation of the advance in the perihelion of
Mercury. (These lectures have not been reduced to written form. )

These notes have many of the imperfections of a first course on
a new subject. Here the new subject is the use of modern geometrical
ideas in the long-stagnant treatment of classical mechanics. The initia-
tive of George Mackey has been vital for this subject, and the books by
Ralph Abraham and Schlomo Sternberg are excellent guides. A few of
" the topics covered here are apparently not to be found in this form in
the literature: The treatment of the Legendre transformation (§9 of
Chapter I), the conceptual treatment of the generating functions for
canonical transformations (§26 of Chapter III and §44 of Chapter VI),
the description of manifolds by means of germs (Chapter IV, §30) and
the éeometric description of the characteristics of first order partial
differential equations (Chapter VI, §46). This, with the material on
contact transformations, may suggest how much of classical Mathe-

matics stands in need of modern conceptual formulation.

iii



I am much indebted to the students whose notes have improved
' s
and codified my lectures, and to Rene Thom for permission to include

the material of his guest lectures.

The University of Chicago Saunders MacLane
' October 1968
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CHAPTER IV. MANIFOLDS

29 Topological Spaces

To define manifolds, we first review the basic properties of topo-

logical spaces.

Definition. A topological space is a pair (X,t) where X is a set

and t is a collection of subsets of X such that:
1° Fet, X et;

2O UNVet whenever Uet and V e t;

30 If {U} is a collection of subsets of X such that U e t
o ae A o

for each «, then U U €t,
ae A «a

Here t is called the topology of X. The sets in t are called open sets.
A subset F of X is called closedif X-F et, where X-F = {xeX|x/F}
is the complement of F in X. We will often use just X to refer to the

topological space (X,t) when it is clear what topology on X is intended.

Example . R" together with the subsets which we have previously called

open is a topological space.

If (X,t) and (X',t') are topological spaces, a function :X —> X' is

; : -1
continuous if f (V) e t whenever V ¢ t', where the set

-1
f (V)= {xe X| £f(x) ¢ V} is the inverse image of V under f.

The function f:X —> X' is a homeomorphism if it is a bijection

-1
(one-to-one onto) and both f and f are continuous.
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A neighborhood of a point x ¢ X is any open set in X contaihing .

A function f: X —> X' is continuous at x, where x ¢ X, if for

every neighborhood V of f(x) in X', there exists a neighborhood U

of x in X with

f(U)yCv (i.e., UCE “(V))

It is easy to show that f:X —> X' is continuous if and only if f is
continuous at every point x e¢ X.

'Examples:
N ¢ (X,t) is a topological space and S is any subset of X, let

t' = {UA p|Uet}.

Then t' is a topology for S, called the relative topology.

2° If (x,t) is a topological space and the function X P53 maps

X onto the set S, let
t'={vcs| p-i(V) € t}.

Then t' is a topology, called the quotient topology, for S, and

(X,t) 2> (S,t') is a continuous map.

3° It (X,t) and (Y,t') are topological spaces, let X X Y denote the

ordinary cartesian product of the sets X and Y. Let
t_o= {UXVI Uet, Ve t'},

t = all subsets of XX Y which are

unions of sets in too



v UXVv

L R T,

Then (X X Y,T) is a topological space, and t is called the product

topolo gy-

We have the two projection mappings onto X and Y:

piXXY —> X Q@ X XY > Y

(x,y) ——>x (%, y)—>y
These are both continuous when X X Y is given the product topology.
Definition: If (X,t) is a topological space, a basis for (X,t)
(or a "basis for the open sets of (X,t)") is a collection t, of open sub-
sets of X such that every member of t is a union of members of toe
Thus in Example g% To is a basis for (XX Y,t).
A topological space is separable if it has a countable basis.
A sub-basis ty for (X,t) is a collection of subsets of X such
that the set t of all finite intersections of members of t1 forms a

basis for X. Given any collection t, of subsets of a set X such that

1
X= U U, there exists a unique topology t for X having t, asa sub-
t
1 -
basis -~ namely, t consists of all unions of finite intersections of mem-

bers of ti'



If {(Xa’ ta)}ae a is a family of topological spaces, let

X = TT X be the cartesian product of the sets X and let
x @ a

Pa:X —> X, be the projection onto the afth coordinate space. Let

-
t, = M LF (V[ Vet,}.

The topology t for X having t, as sub-basis is called the product

1
o — : : 1 1 3
topology. Then each Pa.(X,t) > (Xa’ ta) is continuous, If (X',t') is
another space, and if for each @ ¢ A we are given a continuous map
fai (X1, t') — (Xa’ fa)’ there exists a unique function f:X'—> X such

that Paf = f, for each @, since the set X 1is the set product of the Xa°

Then if Ve t

y --say V= P-i(U ) where U _ is open in X , it follows
a '« a o

that f-iV = f-iP-iU = (P f)-iU = f “Ler is open in X'. Since t, is
a « a a a « 1

a sub-basis for (X,t), it follows that f is continuous (This means that

(X,t) is the product of the (Xa” ta/) in the category of all topological

spaces.)

Suppcse the Xa as above are disjoint (if not, take disjoint homeo-

morphic copies). Then we can topologize their disjoint union

Y = '[&'L Xa as follows:

UCY isopenin Y <> UNX  isopenin Xar for each ea.
In a fashion similar to that above, if (X',t') is another topological space
and ga:Xa—> X' is a continuous map for each @, then there exists a
unique continuous map g:X —> X' such that g, = 89, > where

qa: Xa—f\/ X 1is the injection of Xa into the disjoint union. This means



that Y is the "coproduct” of the (Xa’ta) in the category of all topologi-

cal spaces.

Suppose we are given a set X and subsets Xa each with a topo-

logy ta' such that

e ox-Ux
a " a
2° Y =X NX_ is open in both X and X _, and the relative topo-
af p @ p
logies on Ym3 induced from (Xa’ ta) and (Xﬁ’tﬁ) coincide.

Then X has a topology

t= {UC x|umxa ¢t forall o).
This situation can be expressed by the statement that X 1is the
coequalizer, in the category of topological spaces and continuous maps,

of the maps

L ==L

p

where one map injects Yaﬁ into Xa" the other into X _ .

An open covering for a topological space (X,t) is a collection of

open sets of X whose union is X . If {Ua} is an open covering for
(X,t), it is easily checked that a function f:(X,t) —> (Y,t') is con-
tinuous if and only if f| U, Ua/ —> Y is continuous in the relative

topology of Ua for each «a.
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A topological space X is Hausdorff if for every pair of points
X,y ¢ X there exist opensets U,VC X with xe U, ye V such that

Unvs=g.

30. Manifolds,

Let X be a topological space, x ¢ X. Every function f: U —> R
such that x ¢ U and U is an open subset of X determines the germ
fx of f at x, where fx= g, if g:V —> IR and there exists
WC UNYV suchthat x¢ W, W is openin X and £|W=g|Ww.

Let Cx denote the set of germs of all continuous functions to IR

defined on some neighborhood of x. Cx is an algebra.

Definition. A loaded space is a triple (X,t,G) where (X,t) is a

topological space and G assigns to each point xe¢ X a set Gx of germs
at x (germs of the "goad" functions).

Unless otherwise specified, we will assume that GxC' Cx” Often

we will require that Gx be an algebra.

Examples:

o

1 X = U, open in R" (e.g., X=R) and G = germs of all C®

functions at x. Call this loaded space (UO, COO).
o

2 I (X,QG) is a loaded space and V is open in X, then (V,G|V) is

a loaded space.
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3° Let (X,t) be a topological space and _? any set of continuous

functions f:X —> IR. Set gx = {fxlf € 5’ }. Then (X,t,g) is

a loaded space.
If (X,g) is a loaded space and U is open in X, define

?(U) = {f/f: U — R continuous and £, e gx’ for all x e U}.

Q(U) has the sheaf property: if U =LaJVa where the V, are open,

then f E?(U) if and only if for each @, f|V, ¢ Q(Va).
If (X,?) and (Y, ) are loaded spaces, a loaded map
(X,g) S (Y, M ) is a map X 25 ¥ such that
o . s
1 ¢ is continuous,

o(x) M o) implies (ho) ¢ Cﬂ

Notice the similarity of this definition to that of a continuous map.

2O xe X, h

The following facts follow easily from the last definition:
1° The composite of loaded maps is loaded.

sk
2° V openin Y implies ¢ X(V)C?(ch)n

5" ¢ is loaded if and only if at each x ¢ X, ¢ is continuous and

carries "good" germs at ¢(x) to "good" germs at x.

@
A loaded isomorphism is a loaded map (X,q ) —>(Y,34) such that

" xfsy is a topological isomorphism (i.e., a homeomorphism)

g" for each x ¢ X, the correspondence ){ —>g induced
o(x) X

by ¢ isone-to-one and onto.
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Definition. A C% n-chart on (X,g) consists of
1° an open set U of X, called the domain of the chart,
2° a loaded isomorphism (U,QIU) = (UO, c®), where u,
is open in Rr" .
A C%n-manifold is a loaded space (M,g) such that M is Hausdorff
and the domains of all C* n-charts on (.M, Q) cover M. We

will usually also require that M be separable.
; n o e} .
Example: Any open set in IR is a C n-manifold.

An atlas of a C® n-manifold (M, g ) is a set of n-charts whose
domains cover M. The same manifold can have many atlases} the only

"invariant" one is the maximal atlas (all charts).

@ Y
Uf U= Uo and V =~ Vo are charts of the C° manifold (M, g P

then the induced map 0
/_\
U, =U0UNV = 'V
1 ¢ -1 1

b

is C 7, for if xi, : W h ,xn are smooth coordinates on Vi’ then it fol-

lows that each xloe is smooth.
U v




Suppose S is a set. A charton S is a one-to-one function

@
@ n
— S : : d
Sa Ua where SaC S, Ua is open in IR, an ¢, maps

Sa onto Ua’ Two charts Py and ¢ _ are compatible if, for

g
: T isopenin U , ¢ T is openin U
B’ “a P @ ’p 4 B
-1 ) o
(goﬁlT)o(an |<paT) isa C map from goaT onto ¢ T.

g
s, é S

T

B
(o4
<paT

“s

T=S NS , and
@

If {(Sa’ tpa)} is a family of pairwise compatible charts on S such
that the Sa cover S, then the e, collectively determine a topology
on S. If this topology is Hausdorff, then S becomes a manifold. More
generally, we have the following theorem which is often used to construct
a manifold from overlapping pieces Ma- (especially with each Ma an
) n
open set in R):

Theorem. If X is a set and X = U Ma where each
a

o
M =(M,t . q( )) is 2 C® n-manifold such that for each @ and B
@ o o

" A . . .
1 Taﬁ Mr:z MB is open in both Ma and Mﬁ’

2o if xe¢ Ta/ and g is a real-valued function defined near x; then

. eg(a') S q(ﬁ')
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o

37 if UCTa,then Ueta@> Uet

B B’

then
a) X has a topology, namely W is open in X if and only if for
every a, W N Ma is open in Mar’ (We've seen this part before. In
particular, each M is open in X.)
b) X 1is a loaded space, where for x e M, q:{ = gx(a) with x € Man
c) If X is Hausdorff with the topology in (a), then X is a g
" n-manifold. If U L Uo is a chart in Ma for some @, then it is also
a chart in X.

If U L> Uo is a chart on the n-manifold M and xi, 2 & ,xn are

: n i i .
coordinates on Uo C R, then q} = x'o ¢ are called coordinates on U.

We will say that a function (X, g) 5 (v, H ) between two loaded
spaces is loaded at x ¢ X, or smooth at x if it is continuous at x and
satisfies condition (2) of the definition of loaded map for x.

Lemma. If (X, q ) —h9(Y,2{) is any function between C* mani-

folds, x ¢ X, and qi, wE B4 qn are coordinates on the domain U of a

chart U—2 >U0C. R" such that h(x) € U, then h is loaded at x if and

only if each (q'e h)x € q 2
x

Proof. h is loaded at x if and only if ¢h is loaded at x. So if h

is loaded at x, then for every Coo function Uo —k> R, (kcph)x ¢ g
x

In particular, " (qih>x = (xlcph)‘{ ¢ qx
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Conversely, if each (qih)x € qx, let V Y > Vo be a chart of X
such that x e¢ V. Then qih L[J-i must be Coo? so for any k as above,
k«ph¢'1 = k(qihlp-i, e ,qnhq;-i) is the composite of C> functions and
hence C®. Then since y is loaded, koh e qx, This holds for all &*

functions k, so ¢h and hence h are loaded.

A smooth map (a Coo-rhap) h:M —> N between C® manifolds
is now defined to be a continuous map which is loaded at each point
x ¢ M. In other words, a function h is smooth if it is continuous and
if it carries good germs at each point h(x) of N back into good germs

at x. It follows that the composite of smooth maps is smooth.

Example. The sphere S” is an n-manifold. The usual manifold
structure is a generalization to higher dimensions of the charts obtained
by stereographic projection of Szo However, for n2>7 there exist
other manifold structures on S'on9 giving the so-called exotic spheres.

In other words, there exist two manifold structures g and J’{ on Sn
such that the identity function (Sn, q ) —> (Sn, 9{ ) is not smooth.

We have described a manifold as a topological space with a function
q assigning good germs. This function may be repla.céd by the function
U l—->q (U) described above and called a "sheaf® (more exactly, the
sheaf of germs of C® functions. This sheaf-theoretic definition of a
manifold is equivalent to a different definition by atlases (A manifold is

a topological space equipped with a suitable "maximal" atlas).
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The product;: If M and N are g* manifolds, let M X N be

their product as topological spaces. If {Ua ~ U, €C R} and

4“ o 3
{Vﬁ "—p Vﬁ g ]Rn}! are collections of charts covering M and N

respectively, then the UaXU cover M. Furthermore,

B

Ya 5 q’ﬁ o o m n
o Ua XU which is openin IR X IR, so each

ﬁ p)
is a manifold -- if UaXVﬁDW—g—P]R and x ¢ W, then

UQ’XVﬁ

B
B : -1
g, € q:: if and only if g(gaa X llJﬁ) is C

U XV
a

oo g

af (<pa X LIJB)X. The mani-

fold structures coincide on the overlaps, so by the theorem M XN is

a manifold -- indeed, the topology given in the theorem is the product

topology. The projections

1
M &2— MXN —E=N

N aN—— (mon)mn

are smooth maps. Iff K is a manifold and f,f' are smooth maps

K
N\
M N ’
they are in particular continuous, so since M X N is a topological pro-
duct, there exists a unique continuous map K —hiM X N such that
f=ph and f{' = p'h. By selecting suitable charts and coordinates we
can easily show that h is smooth. Hence M X N is the "categorial"

product.
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31. Theé Tangent Bundle.

The tangent bundles defined in Part I, §3 for open sets of IRn,
can now be defined for manifolds.
If M isaC® n-manifold, the tangent bundle T.M consists of

I

M

all points (a,-rac) where a e M and T C is a tangent vector at a.
T
a

(More precisely, TC is a tangent vector at qaa where a ¢ U i> Uog_ ]Rn
is some fixed chart of M.)
1) o n
For each chart U—/——=> U & IR of M,

xR ~T.UCT.M

i ,
via coordinates qi, sses'd } —81- 5 5% %5 —81-1- for T.U. This defines a
9q 9q

chart on T.M. Any two such charts are compatible since the Jacobian
of a change of coordinates in M is non-zero. Thus T.M is a manifold.
(Apply the theorem of the previous paragraph constructing a manifold
from the overlapping pieces T.U.)

A pre-bundle is B where B and M are g™ manifolds, w is
™

M

smooth, and each w'i(m) is a vector space.
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; . n 2
Example. If U  isopenin R', then UOX R (uo,v)

o
o

u
o (o]

with the standard vector space structure on each {uo} X R~ rY is a

pre-bundle called a special pre-bundle.

A chart of a pre-bundle B consists of anopenset U M and

T

M
a pre-bundle isomorphism of 'rr'i(U) with a special pre-bundle.

-rr|-rr'1(U)

U

A vector bundle is a pre-bundle covered by charts, (i.e., the U's

of all possible charts cover M and the w-i(U)'s cover B.)

Note that it is not necessary to require that addition be smooth in a
vector bundle, since a vector bundle is locally like a special bundle, in
which addition is automatically smooth.

T.M is a vector bundle with the charts described above. Similarly,
we define the cotangent bundle T' M and the bundles constructed from
the various mixed tensors. We can consider each of these as a functor
which takes smooth functions between manifolds into smooth functions

between vector bundles.
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32. Bump Functions and the Extension of Germs.

We could have defined manifold with "analytic", "piecewise linear"
or "continuous" replacing g throughout. If we did this for
"continuous", we would get a topological manifold -- a topological
space which locally looks like Euclidean space.

Recall that in Part I we defined a local manifold as a set M with
a set .?’ of "smooth" functions such that M = Uog R"” and } cor-
responds one-to-one to the c® functions on Uy,- We could have de-
fined a manifold in a similar manner: as a set M with a set JF of
"smooth" functions which would determine both the topology of M and
the "good" germs on M as the germs of the functions in F . We used
germs of functions defined only on open sets of M, but the following
theorem shows that it suffices to consider only germs of functions de-

fined "in the large'' (on all of M).

(e
Theorem. If Mis a C manifold and g is a smooth germ at

x ¢ M, then there exists a c® function f: M —> IR such that Ly = -

Before proving the theorem we will need some preliminary results.
Definition. A topological space X is compact if every open cover-
~ing of X has a finite subcover.

Theorem. A compact subspace of a Hausdorff topological space is
closed. |

(This is a standard result and can be found in any text on point-set

topology. )
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Lemma (Existence of "bump" functions): If M is a manifold,
U CM is open, and x ¢ U, then there exist compact subsets C and

C' of U and a Coo function h: U —> R suchthat xe CC C'C U and

h=10on C, h=0 outside C'.

Proof of Lemma. It suffices to consider a chart containing x.
We maytake achart in Euclidean space containing a disc about 0 of
radius 3. (If not, blow up the chart by a large enough factor.)

Take C = closed disc about 0 of radius 1, C' = closed disc about 0

&

8)

of radius 2.

If n=1, define h_=0 for x> 2, h =1 for 0<x<1, and to be
any suitable C® function whichis 1 at 1 and 0 at 2, for 1 <x<2,

(Problem: give an explicit formula.) Define ho(x) = ho(-x) for x<0.

For general n, let /_\

h(x) = h(|x| %), 3

2 2
where |x| —(in) for x~(xi,,,.,xn),

Proof of Theorem. Let U be the domain of a chart containing x.

Construct a smooth "bump’ function b on U by the above lemma. Let



